

INTEGRATION MANUAL

v. 1.0

2 / 68

Date Modification Resp Level

Doc
Version

DLL
Version

CSSI
Compatible Protocol

18/03/12 Preliminary version MIC - -

 Official version (release) JFC OR 11.4.1 YES

13/03/15 Added CriticalBehaviour MIC

5/10/15 Errors table updated.
Added function GetLastLevels.
Added function SetDateTime.
Added function GetNetworkParams.
Added function SetNetworkParams.
Added function EmptyCashBoxEx.
Added function GetCCDetails.
Updated function GetAllProperties.

MIC 15.10.5 15.10.5 YES

19/12/16 Updated function GetCurrentLevels MIC

25/5/17 Updated function GetLevels
Addes section Special properties

MIC

3 / 68

INTEGRATION MANUAL .. 1

1. CashKeeper ® DESCRIPTION... 9

2. CashKeeper ® INTEGRATION CONCEPT ... 11

3. CashKeeper ® INTEGRATION DIAGRAM .. 12

3.1. Multiple CashKeeper Integration .. 13

4. CashKeeper Integration Methods ... 14

4.1. CKEasy .. 14

4.2. CKeeper .. 14

4.3. Sockets.. 14

5. Use CKEasy ... 14

5.1. Use .. 14

5.2. Connection ... 14

5.3. Disconnection ... 15

5.4. Collection .. 15

5.5. Payment ... 15

5.6. Add change ... 15

5.7. Give change .. 15

5.8. Parameters ... 15

5.9. Cashbox .. 15

5.10. Functions without graphical interface .. 15

5.11. Other parameters .. 16

5.12. Special Properties .. 16

5.13. Functions reference ... 16

AddChange(PaidInValue As Int32) .. 16

CashBoxControl(Mode As CBC_Modes, CoinsValueInCB As Int32, NotesValueInCB
As Int32, RemainingChange As Int32) .. 16

Configuration() ... 17

Connect () ... 17

Change(PaidInValue As Int32, PaidOutValue As Int32) .. 18

Charge(ValueInCents As Int32, PaidInValue As Int32, PaidOutValue As Int32) 19

Disconnect ()... 19

EmptyCashBox(Device As CKD_Devices, Value As Long) 19

GetAmounts(Denoms As String, Quantities As String, Value As Int32) 19

GetLevels(LevelType As CKL_Levels, Denoms As String, Levels As String) 20

Pay(ValueInCents As Int32, PaidOutValue As Int32) .. 20

5.14. Properties reference .. 22

BackColor.. 22

Indicates the form background colour ... 22

InverseColor ... 22

OnErrorDiscard ... 22

6. USE CASHKEEPER ... 22

6.1. CashKeeper® states .. 22

6.2. States and transition diagram ... 23

6.3. Prior considerations ... 23

6.3.1. Accepted denominations ... 23

6.3.2. Value data information.. 24

4 / 68

6.3.3. Function response .. 24

6.3.4. Payments in CashKeeper ... 24

6.3.5. DISABLED event ... 24

6.3.6. Events ... 24

6.3.7. Characteristics .. 24

6.4. Start-up (synchronous process) ... 24

6.4.1. Local CSSI .. 25

6.4.2. Remote CSSI ... 25

6.5. Collection .. 26

6.5.1. Different operations working .. 27

6.6. Payments (Asynchronous process) ... 27

6.6.1. Payment of an amount .. 27

6.6.2. Payment with specific denominations .. 27

[Involved functions: PaySpecific] .. 27

6.7. Emptying operations .. 28

6.7.1. Emptied of change (Asynchronous process) .. 28

6.7.1.1. Partial Emptying ... 28

6.7.1.2. Total Emptying ... 28

6.7.2. Emptying cashboxes (synchronous process) .. 28

6.8. Change refill ... 29

6.9. Collecting information from the cash system ... 29

6.9.1. Cash available for change .. 29

6.9.2. Cash on cashboxes ... 29

6.10. The ‘broken’ cent ... 29

6.11. Working with more than one currency ... 30

6.12. Barcode... 30

6.13. Other functions .. 31

6.13.1. Cleaning the coin validator .. 31

6.13.2. Modify the exchange coins counters .. 31

6.13.3. Upgrade Firmware devices .. 31

6.14. System shut down .. 31

6.15. System parametrization .. 32

6.15.1. Denominations inhibition .. 32

6.15.2. Change protection ... 32

6.15.2.1. Low level alerts .. 32

6.15.2.2. Note Level Protection .. 32

6.15.3. ‘Burglary’ protection .. 33

6.15.4. Other parametres and properties ... 33

6.15.4.1. DisableAutoText (Int32) (‘Appearance’ property) 33

6.15.4.2. LightTime (Int32) (‘Appearance’ property and ‘Lock’ property) 33

6.15.4.3. RejectIfClosed (‘Behavior’ property) ... 34

6.15.4.4. CancelLowLevel (‘Behavior’ property) ... 34

6.15.4.5. CancelValueEvents (‘Behavior’ property) 34

6.15.4.6. ConfigID (‘ID’ property) ... 34

6.15.4.7. LogDisable .. 34

6.15.4.8. CoinCashBoxDetect .. 34

6.15.5. Change the language ... 34

5 / 68

6.16. Error resolution .. 35

6.17. More than one simultaneous device management 35

7. CKeeper integration difference between Android and Windows versions 36

7.1. Function output parameters ... 36

8. USE CashKeeper®with Direct Method ... 37

8.1. Prior considerations ... 37

8.2. Messages format .. 37

8.2.1. Commands.. 37

8.2.2. Answers .. 37

8.2.3. Events ... 38

8.3. Start-up (synchronous process) .. 38

8.3.1. Negotiate the access key to the service .. 38

8.4. Shut down the system ... 39

ANNEX 0. Images .. 40

� Figure 1 ... 40

ANNEX 1. Constants description ... 42

LC_DeviceType: .. 42

LC_Smart_Devices: ... 42

LC_CashBox_State:... 42

LC_Smart_Devices: ... 42

LC_Logical_Devices: ... 42

LC_CashBox: ... 42

LC_ConnTypes: ... 42

Idiomas: .. 42

ERRORS ... 43

WARNINGS ... 44

ANNEX 3. Function list. Definition ... 46

• (0) AbortTimer .. 46

• (3) AcceptPending .. 46

• (67) ActivateRefillMode() as boolean .. 46

• (4) AlternateOperation (Operation as Byte) as boolean 46

• (6) CleanBulk (Complete as boolean) as boolean ... 46

• (7) CloseAll () as boolean .. 46

• (5) CheckLevels (LowLevelActive As boolean, HopperFull As boolean,

CoinCashBoxState As LC_CashBox_State, NoteCashBoxState As LC_CashBox_State)

as boolean .. 47

• (55) CheckSmartFirmwareFile (FullPathFile as string, Device_ID as

LC_Smart_Devices, FirmwareVersion as string, DataSet as string) as Boolean 47

• (9) Disable(PayBack As Boolean) As Boolean ... 47

• (52) DiscardOperation(Operation as byte) as Boolean 48

• (68) DiscardPayOperation() as Boolean .. 48

• Disconnect() ... 48

• (10) Display(Line1 as String, Line2 as String, UseBigFont) as Boolean 48

• (11) EmptyCashBox(Device_ID as LC_CashBox) as Boolean 48

• (11) EmptyCashBoxEx(CashBox As LC_CashBoxes) As Boolean 48

• (12) EmptyDevice(Device_ID as LC_ CashBox) as Boolean 48

6 / 68

• (13) EmptyDeviceSpecific(Denoms as String, NumberToKeep as String) as

boolean ... 48

• (14) Enable() as Boolean .. 48

• (15) ForceCoinLevel(Value as Integer, Level as Integer, AddToCurrentLevel As

Boolean) as Boolean .. 49

• (66) GetAllProperties ... 49

• (16) GetBrokenCents(Value as INT32, ResetValue as Boolean) as boolean 49

• (17) GetCashBoxLevel(CountryCode As String, Values As String, Levels As

String) As Boolean .. 50

• (77) GetCCChange(CountryCode As String, Change As Int32) As Boolean 50

• (86) GetCCDetails(CC As String, Multiplier As int32, Decimals As int32) As

Boolean .. 50

• (24) GetCounters(CoinCounter as Int32, NoteCounter as Int32) as Boolean .. 50

• (38) GetCountryCodes(MainCC As String, OtherCC As String) As Boolean 50

• (19) GetCurrentLevel(Values as String, Levels as String) as Boolean 50

• (72) GetDevices(DeviceList As String) As Boolean .. 50

• (54) GetFirmwareVersion(Device as LC_Logical_Devices, FirmwareVersion as

string, Dataset as string) as Boolean ... 51

• (21) GetInhibitState(CountryCode As String, Values As String, Inhibits As

String) As Boolean .. 51

• (76) GetLastIN(CountryCodes As String, AmountsOrDenom As String, Detail As

Boolean, Operation As Byte) As Boolean.. 51

• (79) GetLastLevels(ConfigID As Byte, Denoms As String, Qtys As String, CCs As

String) As Boolean .. 51

• (8) GetLowLevelNotes(Values As String, Levels As String) As Boolean 51

• (82) GetNetworkParams(HostName As String, DHCPEnabled As Boolean, IP As

String, Gateway As String, Mask As String, DNS1 As String, DNS2 As String,

MasterPort As int32, OfficePort As int32, Seed As int32) As Boolean 51

• (23) GetMaxLevel(Values as String, Levels as String) as Boolean 51

• (74) GetUnikeID (ID as string) as Boolean ... 51

• (29) Pay(Value as Int32, TestOnly as Boolean) as Boolean 52

• (30) PaySpecific(Denoms as String, NumberOf as String, TestOnly as Boolean)

as Boolean .. 52

• (87) PaySpecificEx(Denoms as String, NumberOf as String, TestOnly as

Boolean) as Boolean .. 52

• (32) RejectPending() .. 52

• (33) Reset() as Boolean ... 52

• (26) ResetCounters(Device_ID as LC_CashBox) as Boolean 52

• (75) SetCCChange(CountryCode As String, Change As Int32) As Boolean 52

• (81) SetDateTime(Year As Integer, Month As Integer, Day As Integer, Hour As

Integer, Minute As Integer, Second As Integer) As Boolean 53

• (71) SetDisplayText(Code as byte, NewText as string) as Boolean 53

• (36) SetInhibitState(CountryCode As String, Values As String, Inhibits As

String) As Boolean .. 53

• (70) SetLanguage(Idioma As Idiomas) As Boolean ... 53

• (69) SetLogPath(NewPath as String) as Boolean .. 53

7 / 68

• (27) SetLowLevelNotes(Values As String, Levels As String) As Boolean 53

• (35) SetMaxLevel(Values As String, Levels As String) As Boolean 54

• (83) SetNetworkParams(HostName As String, DHCPEnabled As Boolean, IP As

String, Gateway As String, Mask As String, DNS1 As String, DNS2 As String,

MasterPort As int32, OfficePort As int32, Seed As int32) As Boolean 54

• (39) StartUp(Configuration As Byte, Device as Int32) As Boolean 54

• (51) TargetValue(Value As Long, Operation As Byte) As Boolean 54

• (48) Terminate.. 54

• (42) Totalize(Total_Value as Int32, AutoClose as Boolean) as Boolean 54

• (56) UpdateSmartFirmware(FullPathFile as string, Device_ID as

LC_Smart_Devices) as Boolean ... 54

• (43) ValueIN(Value as Int32, Operation as Byte) as Boolean 55

• (44) ValueOUT(Value as Int32) as Boolean ... 55

• (45) ValueToCashBox(Value as Int32]) as Boolean ... 55

ANNEX 4. List of function by SYNCHRONOUS or ASYNCRHONOUS. 56

List of function by ASYNCHRONOUS ... 58

ANNEX 5. List of properties ... 59

• (20) BarCodeLength ... 59

• (0) BCMaxCoins .. 59

• (1) BCMinValue .. 59

• (2) CancelLowLevel .. 59

• (3) CancelValueEvents ... 59

• (5) CoinCashBoxDetect .. 59

• (18) CoinsLowLevel .. 59

• (4) ConfigID ... 59

• (*) ConnectionType .. 59

• (21) CriticalBehavior .. 59

• (*) CurrentOperation ... 60

• (19) DeviceType .. 60

• (6) DisableAutoText ... 60

• (*) ErrorCode .. 60

• (*) ErrorDescription ... 60

• (*) HostIP .. 60

• (*) HostPort .. 60

• (7) LightTime .. 60

• (8) LogDisable ... 60

• (9) MaxCoins .. 60

• (10) MaxPayout .. 61

• (11) MinFastIn .. 61

• (12) NLPAutoProtect .. 61

• (13) NLPPercentValue .. 61

• (14) NLPStartValue ... 61

• (15) NoteLevelProtection .. 61

• (*) OfficePort .. 61

• (16) PayoutInterval .. 61

• (17) RejectIfClosed ... 61

8 / 68

• (*) SecuritySeed ... 61

• (*) State .. 61

ANNEX 6. List of events ... 62

• (114) BarcodeRead(Code as String) ... 62

• (115) BarcodeStored(Code as String)... 62

• (100) Disabled (ErrorCode As Int32, ErrorDescription As String, CurrentValue As
Int32, TargetValue As Int32, State As Byte, Operation As Byte) 62

• (102) LowLevel (ValuesInfo as String, LevelsInfo as String) 62

• (103) MaxCoinsWarning (ValuesInfo as String, NumberInfo as String) 62

• (113) NoteHeldInBezel (NotePresent as Boolean) .. 62

NotePresent (boolean): It is reported the status of the note 62

• (104) ProcessInterrupted (State as Byte, Value as Int32, Target as Int32,
Operation as Byte) .. 62

• (105) ProtectedValueNote (Value as Int32, PayoutNeeds as Int32, TotalChange
as Int32, Operation As Byte) ... 63

• (106) StateChange (State as Byte, OldState as Byte) ... 63

• (107) ValueIN (CurrentValue as Int32, Target as Int32, Operation As Byte) 63

• (108) ValueOUT (CurrentValue as Int32, Target as Int32, Operation As Byte) .. 63

• (109) ValueToCashBox (CurrentValue as Int32, Target as Int32, Operation As
Byte) .. 63

• (110) Warning (Code as Int32, Description as String) .. 63

ANNEX 7. Manual parameters configuration of connection to the service (CSSI) 64

ANNEX 8. Configuration of the USB port (S.O. WINDOWS®) power management 64

ANNEX 9. Codes and text on the display relation in automatic mode 67

ANNEX 10. Barcode tickets format.. 68

9 / 68

1. CashKeeper ® DESCRIPTION

• Elements description

Banknote validator
mouth (BNV)

Information Display
(VFD)

Coins Collection tray

Inbox of the coin
validator (BV)

Notes validator

Notes recycler (Change
deposit)

Notes Cashbox

Coins validator

Cleaning door

Manual door opening
lever

Coins output to
Collection tray

Coins output to coins
cashbox

Hopper
(Change deposit)

Coins cashbox

10 / 68

• Banknotes and coins routes in CashKeeper ®

Output/pay notes

Notes entrance

Change buffer storage

Collection cashbox
storage

Rejected notes

Coins entrance

Change buffer storage

Collection cashbox
storage

Rejected coins

Output/pay coins

11 / 68

2. CashKeeper ® INTEGRATION CONCEPT

Due to the nature of the payment and collection processes, CashKeeper ® is a device
that works asynchronously. There are different procedures that can be performed in a
synchronous way, but those involving physical device operations (like collections,
payments, sending change to cashboxes, etc...), work in a completely asynchronous
manner.

The integration of a CashKeeper ® device must be made through the communication
with an interface called ‘CashKeeper® Secure Server Interface’ (CSSI), protocol TCP/IP-
based. To establish this communication with CSSI, Could be done through the tool
Ckeeper.DLL (CashKeeper Control Tool), or through the 'direct method', attacking the
CSSI directly via sockets (TCP/IP).

CSSI interface may be resident in the own POS terminal or can be used a middle
'bridge' between the POS terminal and the CashKeeper ® device, CashKeeper®

Bridging Server’ (CBS). CBS is a server that will manage all of its capacity and resources
to control the communication between the POS terminal and the CashKeeper ®,
through the CSSI.

• CSSI LOCAL INTEGRATION

• CSSI REMOTE INTEGRATION (with CashKeeper® Bridging Server)

POS

(Host)

SWITCH / HUB CBS

(CashKeeper® Bridging Server)

USB 2.0

LAN LAN

USB 2.0

POS

(Host)

CASHKEEPER®

CASHKEEPER®

12 / 68

3. CashKeeper ® INTEGRATION DIAGRAM

• CSSI LOCAL INTEGRATION

• CSSI REMOTE INTEGRATION (with CashKeeper® Bridging Server)

CASHKEEPER ®

Connection hub

NOTE
RECYCLER

COIN
RECYCLER

COIN
VALIDATOR

D
IS

P
LA

Y
V

FD

LE
D

 M
A

N
A

G
ER

CASHKEEPER® BRIDGING SERVER

USB 2.0

POS (TPV)

 POS
APPLICATION

CashKeeper®

Secure Server

Interface

W
IN

D
O

W
S

®
 O

S

W
IN

D
O

W
S

®
 O

S
 *

LAN

SOCKETS (TCP/IP)

CASHKEEPER ®

Connection hub

NOTE
RECYCLER

COIN
RECYCLER

COIN
VALIDATOR

D
IS

P
LA

Y
V

FD

LE
D

 M
A

N
A

G
ER

USB 2.0

POS (TPV)

POS APPLICATION

CashKeeper® Secure

Server Interface

W
IN

D
O

W
S

®
 O

S

SOCKETS (TCP/IP)

CKEEPER.DLL*

C
K

E
E

P
E

R
.D

LL
*

Firmware Firmware Firmware FW

Firmware Firmware Firmware FW

* Optional

* Optional

13 / 68

3.1. Multiple CashKeeper Integration

(protocol 4 or posterior)

RED (TCP/IP)

USB 2.0

14 / 68

4. CashKeeper Integration Methods

4.1. CKEasy

It is the easier and faster system integration, because it
incorporates its own graphical interface. All calls are
synchronous, which facilitates the use of different
functionalities. Those functionalities, are very high level ones,
like collections, payments, to tally, etc.. Also, it incorporates
some calls without graphical support to allow the application
to get the necessary data.

4.2. CKeeper

It's an events-oriented system that allows controlling
CashKeeper in all its fullness, does not include graphical
interface, enabling seamless integration with your
application. It offers the same functionality as the sockets
method, but as it is an ActiveX object, it makes it easier.

4.3. Sockets

It is the lower level integration system and which requires
more complexity, although it allows you to be transparent to
the OS used, the only requirement is that SO used can run
with sockets. Nowadays, all.

5. Use CKEasy

5.1. Use

To use CKEasy, create an ActiveX Object EasyCashKeeper.
Cause the connection process requires a few seconds. It is
recommended to connect at initializing the application time
(although the integrator can choose when connecting and in
any case, it connects automatically when calling any function)
and disconnecting when application exits. Once connected,
use the function calls as desired. Attention, this library is not
thread safe, so during call execution, others calls should be
avoided.

5.2. Connection

If you connect to the CSSI located on your own computer, you
only need to call the Connect method.
If you connect to the CSSI located on another computer, you
need to inform the IP property with the ip address or the
network name of the computer that has physically the
CashKeeper attached. Then call the Connect method.

15 / 68

5.3. Disconnection

You only need to call Disconnect function.
5.4. Collection

For a collection the Charge function will be do the job,
returning once completed the introduced amount, the
returned change and if there has been any problem.

5.5. Payment

To make a payment the function to call is Pay, it will return
the payment result (correct / incorrect).

5.6. Add change

AddChange function is specific to add change, displaying on
the screen the lack/insufficiency levels depending on the
different denominations configuration and allowing the
introduction of banknotes and coins. Returns the amount
introduced.

5.7. Give change

The Change function opens a screen that allows you to insert
money and choose that way you want to be returned. It
should be remind that in an installation with CashKeeper
there is no money cash to give change for the tobacco
machine, fairground, etc. Returns the entered and the paid
amount.

5.8. Parameters

The Configuration function opens a screen where it can be
defined some parameters which allows adapting the
CashKeeper functioning to the client operation.

5.9. Cashbox

The CashBoxControl function allows the application to control
the processes of end of day, configurate the
acceptance/rejection of different denominations, empty
cashboxes, completely empty available change to the
collection cashboxes, set the initial amounts, etc. It includes
several options without graphical interface, in the case that
the application already have an own screen.

5.10. Functions without graphical interface

The EmptyCashBox, GetAmounts and GetLevels functions
allow emptying drawers, obtaining the amount and getting
the detail of the different denominations without any
graphical interference.

16 / 68

5.11. Other parameters

BackColor and InverseColor are two properties that allow
choosing to the integrator the forms colour to "improve" the
CashKeeper integration with your application.
ErrorCode and ErrorDescription are two variables that
contain code and description in case of error.
OnErrorDiscard this property allows software to define what
will happened with the credited amount when an error occurs
during charge operation.

5.12. Special Properties

This properties are read only, and can be read only when it is
connected. When it is not connected, will return default
values. Both properties helps applications to be currency
aware.
ShowDecimals Application can read this property to know the
number of decimals must be shown on amounts.
AmountFactor Application should read this property to know
the multiply / divide factor between the Amounts in currency
and the values must be used in operations or operations
returns.
Ex. With EUR will return factor is 100.
If I want to charge/ pay 1,45€, I must send 1,45 * 100 = 145
When I add some change, machine will return 145, after apply
the factor, (145 / 100) = 1,45

5.13. Functions reference

AddChange(PaidInValue As Int32)

Opens a screen that allows adding change to CashKeeper.
Output parameters

PaidInValue will contain the amount added to change
Returns:
True if done correctly
False if an error occurred, see properties ErrorCode y
ErrorDescription for more information.

CashBoxControl(Mode As CBC_Modes, CoinsValueInCB As Int32,
NotesValueInCB As Int32, RemainingChange As Int32)

Input parameters:

Mode possible values:
0-Normal: Open a form to see the CashKeeper levels and it
allows changing the settings for initial, minimum and
maximum values as well as to tally.

17 / 68

1- CBC_Disable_Config: Open a form to see the CashKeeper
levels and allows to tally.
4- CBC_Disable_Actions: Open a form to see the CashKeeper
levels and it allows changing the settings for initial, minimum
and maximum values.
7- CBC_Blind: It shows a process screen (without data) and
does the end of day process (send the remaining of initial
change to cashbox and empty cashboxes).
15- CBC_Blind_By_Value: It shows a process screen (without
data) and does the end of day process (send the remaining of
initial change to cashbox and empty cashboxes). You must
provide the amount you want to keep in change on
RemainingChange parameter.
5: It is the combination of mode 1 and 4, it displays a screen
with the CashKeeper data but doesn't take any action.
Output parameters

CoinsValueInCB: it will contain the amount of coins in cashbox
in case of emptying the cashboxes.
NotesValueInCB: it will contain the amount of banknotes in
cashbox in case of emptying the cashboxes.

RemainingChange: It will contain the amount of change that
has CashKeeper.

Returns:
True if done correctly
False if an error occurred, see properties ErrorCode y
ErrorDescription for more information.

Configuration()
Opens a screen that allows configuring various CashKeeper
parameters.
Returns:
True if done correctly
False if an error occurred, see properties ErrorCode y
ErrorDescription for more information.

Connect ()
Initiates the CSSI connection.
Returns:
True if done correctly
False if an error occurred, see properties ErrorCode y
ErrorDescription for more information.

18 / 68

Change(PaidInValue As Int32, PaidOutValue As Int32)
Opens a screen that allows making denominations changes.
For example 1 note €5 for 5 coins of €1.
Output parameters

PaidInValue: Entered amount
PaidOutValue: Returned amount
Returns:
True if done correctly
False if an error occurred, see properties ErrorCode y
ErrorDescription for more information.

19 / 68

Charge(ValueInCents As Int32, PaidInValue As Int32, PaidOutValue
As Int32)

Open a screen for the payment amount in cents
Input parameters:

ValueInCents : Amount to be received
Output parameters

PaidInValue: Entered amount
PaidOutValue: Returned amount
Returns:
True if done correctly
False if an error occurred, see properties ErrorCode y
ErrorDescription for more information.
It is important to verify returned values. If function
terminates OK, it allows you to detect “broken cents”. If
function fails, it allows you to detect pending payments or
and incomplete amount.

Disconnect ()
Ends CSSI connection. This method never can have an error,
so it does not return any value.

EmptyCashBox(Device As CKD_Devices, Value As Long)

Screenless function to empty the cashboxes.
Input parameters:
Device: Cashbox to empty possible values:
CKD_Coins = 0
CKD_Notes = 1
Output parameters:
Value: Amount containing the empty cashbox before
emptying it.
Returns:
True if done correctly
False if an error occurred, see properties ErrorCode y
ErrorDescription for more information.

GetAmounts(Denoms As String, Quantities As String, Value As

Int32)

Screenless function to get the exchange contains detail of
CashKeeper.
Output parameters:
Denoms: Denomination list separated by commas.

20 / 68

Quantities: Quantities list of denominations separated by
commas and respective to the denomination list.
Value: Exchange amount.
Returns:
True if done correctly
False if an error occurred, see properties ErrorCode y
ErrorDescription for more information.

GetLevels(LevelType As CKL_Levels, Denoms As String, Levels As

String)

Screenless function to get the contain detail of CashKeeper.
Depending on the LevelType parameter will return the initial,
maximum, change or cashbox.
Input parameters:

LevelType: possible values:
CKL_Initial = 0
CKL_Max = 1
CKL_Current = 2
CKL_CashBox = 3
CKL_LevelStatus = 4
Output parameters:
Denoms: Denomination list separated by commas.
Levels: Quantities list of denominations separated by commas
and respective to the denomination list. When LevelType is
CKL_LevelStatus, levels will contains the traffic light code (0 =
green, 1 = orange, 2 = red).
Returns:
True if done correctly
False if an error occurred, see properties ErrorCode y
ErrorDescription for more information.

Pay(ValueInCents As Int32, PaidOutValue As Int32)

Opens a screen that reports on the amount payment process
in cents.
Input parameters:
ValueInCents: amount to pay in cents.
Output parameters:
PaidOutValue: Amount actually paid.
Returns:
True if done correctly
False if an error occurred, see properties ErrorCode y
ErrorDescription for more information.

21 / 68

22 / 68

5.14. Properties reference

BackColor

Indicates the form background colour
InverseColor

Indicates the letters colour, it is automatically calculated as
changed the BackColor property

IP

IP address where is the CSSI located. It is used at the
connection time so it has to be reported before connecting.

OnErrorDiscard

When an error occurs during charge operation, could remain
some credited amount on the machine. With this property,
software can control if next charge operation takes care of
the already credited amount or not.

6. USE CASHKEEPER

Procedures to operate with CashKeeper ®:

6.1. CashKeeper® states

To understand the CashKeeper processes operation, before we have to explain
its states:

o ALL_CLOSED (0x00): Indicates that the communication ports are not
open and there is no active communication with the device. It is the
initial state. Attention, as it is a CashKeeper state, without being
connected is impossible to know it. Therefore the integrator must
control when is or not connected.

o IDLE (0X01): The system is in sleep mode. Communication with

the device is active and can be performed any action. With the
exception of some specific commands (used to make CashKeeper
change of state), most of the functions must be done when CashKeeper
is in this state.

o ENABLED (0X02): The system is in cash reception state.

o PAYING (0X03): The system is doing a payment (notes and/or

coins). During this state, the system will trigger the ValueOUT event
informing of the total amount paid.

o FLOATING (0x04): The system is sending coins and/or banknotes to

the cashboxes. During this state, the system will trigger the
ValueToCashBox event reporting the total amount sent to cashboxes.

23 / 68

o EMPTYING (0X05): The system is emptying the coins and/or notes
change recipients to the cashboxes. During this state, the system will
trigger the ValueToCashBox event reporting the total amount sent to
cashboxes.

o ERROR (0x06): The system is in an error state and is not possible

to operate with it. The system acquires this status when a non-
recoverable error occurs (note or coin jammed, etc.). The only
exception would be the Reset function, which during its execution,
acquires this status to prevent the execution of other commands.

o VALIDATION(0x07): The system is verifying the introduced

coins/banknotes, this means that there is mechanical movement on the
devices. It is in this state when ValueIN events occur corresponding to
validated cash.

6.2. States and transition diagram

Legend diagram
Boxes: States
Black arrows: CashKeeper functions
Green arrows: external actions/desitions
Red arrows: Error situations.

6.3. Prior considerations

6.3.1. Accepted denominations

CashKeeper is able to accept and validate different denominations from
different countries. Generally, it is set a currency (EUR, GBP, USD, etc.) as

24 / 68

principal (will be the only one that is paid), and there may be other currencies
only accepted. For example, in border/touristic zone, could be interesting to
accept dollars as well as the local currency.

6.3.2. Value data information

All the returned or informed value data, will be in cents mode and without
decimals.
 (f.e. 4,5 € � 450, 3.5£ � 350).

6.3.3. Function response

All CashKeeper functions return a 'boolean' type value as a result of the same.
If the function can be done satisfactorily, it will be returned true. Otherwise, it
will return false and you should refer to ‘ErrorCode’ and ‘ErrorDescription’
properties.

6.3.4. Payments in CashKeeper

CashKeeper is programmed to make payments with the lowest possible coins
or banknotes number. Anyway, in some cases, to reduce payment times, the
theoretical optimal denominations could not be used (f.e. if a payment of 10
Euro cents must be done having 10 cent coins available, it is possible that
CashKeeper use 2 coins of 5 cents if the process of searching for the 10 cent
coin takes too many time).

6.3.5. DISABLED event

Due to the CashKeeper processes nature, most of the functions that involve
mechanical activity are asynchronous processes. To help the integrator know
when a process is finished, and when can be sent new commands, the
'Disabled' event is trigged to indicate the end of it.

6.3.6. Events

This library raises events one by one. Consecutives events won’t be raised until
previous event is not finished. So try to process events as fast as possible.

6.3.7. Characteristics

This library is not thread safe, so you must serialize functions calls.

6.4. Start-up (synchronous process)

[Involved functions: Connect, GetDevices , StartUp]

To the system start-up, a connection must be opened before with the active
CSSI, using the Connect method (HostIP as string, HostPort as byte, OfficePort

as byte, ConnectionType as byte, SecuritySeed as Int32). This should be passed
the following parameters:

o HostIP: where to find the CSSI IP address or network name.
o HostPort: listening CSSI port for HOST connections.
o OfficePort: listening CSSI port for BACKOFFICE connections.

25 / 68

o ConnectionType: type of connection being made (Host or
BackOffice)

o SecuritySeed: Security code for CSSI secure connections (higher
than 100000 and lower than 999999).

6.4.1. Local CSSI

If CashKeeper is connected directly to the HOST machine, the CSSI will
automatically start when the CONNECT method is called.

6.4.2. Remote CSSI

In the case that CashKeeper is connected to a remote PC (CBS or other), CSSI
must be active previously before the Connect function is called.

If the Connect function result is satisfactory, the function will return true.
Otherwise, it will return false and ErrorCode and ErrorDescription properties
should be consulted to find out the cause of the failure.

Once it has been established the CSSI communication, we can check the ID of
each CashKeeper connected to the computer where is the CSSI running. In the
case of that it has been configured previously and we already know the
configuration, this step can be ignored.

The next step would be to invoke the StartUp function (ConfigID as byte,
Optional Device as Int32) to open the CashKeeper communication ports.
Parameters:

o ConfigID (Byte): Indicates the configuration to start. If it
does not exist, it is automatically created. You can have as many
settings as desired (256 maximum) with the same device. In the case
that the same PC has connected more than one CashKeeper, the
settings will indicate which of them is going to be connected.

o Device (Long): Device identificator. In the case of the first
CashKeeper connection in a computer that’s runs the CSSI and having
more than one connected CashKeeper, this parameter becomes
required and we need to indicate with which of them we want to
connect.

Once has been performed satisfactorily the StartUp function, the CashKeeper
state will turn from ALL_CLOSED(0x00) to IDLE (0x01).

26 / 68

6.5. Collection

[Involved functions: Enable, Totalize, Disable, AlternateOperation,
DiscardOperation]

The main use of the device is the collection, Cashkeeper can have up to 10
payment operations open at the same time, although only one can be active.
By default it works in operation zero. If in the middle of a charge (when it is in
ENABLED (0x02) state), we want to change to another operation, can be done
using AlternateOperation function. The state transition for a collection would
be:

We can distinguish two types of colletions:
We know the amount in advance: Through the Totalize function, we inform to
the CashKeeper that we wish to collect a certain amount and to automatically
close the collection.
We want to activate the device, but we do not know the amount: Through the
Enable function we move CashKeeper to ENABLED state to accept money. Once
we know the amount, it has to be used the Totalize function to inform
CashKeeper the amount to be collected.
If while in ENABLED state you want to abort the collection, the Disable
command allows us to give back the introduced amount and return to IDLE
state.
Once it is in VALIDATION state (it is validating the money introduced), it
appears ValueIN event informing the validated amount till this moment and the
total amount to collect, in case of being informed, and the current number
operation.
Once finalized or cancelled the collection, CashKeeper will sent a Disabled
event indicating if everything has gone ok and the amounts involved in the
process or the error that occurred.

27 / 68

6.5.1. Different operations working

[Involved functions: AlternateOperation ValueIN, DiscardOperation]
CashKeeper is able to manage up to 10 collecting operations simultaneously.
That means, with introduced cash, it can be ‘parked’ and another collection can
be managed (up to 10). When the device is enabled for the first time, the active
operation is the number 0 operation (zero). To be able to change and park the
active operation, the AlternateOperation method must be invoked, where it
will be indicated the operation to be activated.

When you call this method, the value of the current operation is stored and
activated the new operation, leaving it as the current operation.

For reviewing at any time if there are any pending operation, the ValueIN can
be invoked (¡ATTENTION!, not be confused with the ValueIN event), that will
return the current amount entered in the specified operation. If the number of
operation is not specified, the function will return the introduced amount of
the current transaction.

There are times that we may want to "forget" operations with the consequent
loss of the introduced amount, this can be done with DiscardOperation

function.

6.6. Payments (Asynchronous process)

[Involved functions: Pay]

6.6.1. Payment of an amount

The Pay function should be used to make payments with CashKeeper.
CashKeeper must be on IDLE state to start a payment or a payment test.

If CashKeeper is able to make the payment, the function will return true and if
'TestOnly' has been set to false will begin payment, changing the status of the
device to PAYING. As coins and/or banknotes are being paid, it will appear
ValueOUT event reporting the amount paid. In the same way, whenever it
appears or disappears a note on the exit mouth, it will invoque the
NoteHeldInBezel event informing us of the notes presence or absence. Once
the payment has been completed, it will appear the Disabled event, indicating
the process completion and leaving the CashKeeper state to IDLE.

6.6.2. Payment with specific denominations

[Involved functions: PaySpecific]

The PaySpecific function should be used to make payments with specific
denominations.
The process and conditions that follows a specific payment are the same as a
standard payment.

28 / 68

6.7. Emptying operations

6.7.1. Emptied of change (Asynchronous process)

There are two ways of exchange emptying to cashboxes.
6.7.1.1. Partial Emptying

[Involved functions: EmptyDeviceSpecific]

The most commonly used mode will be the change empty leftovers. That is,
send to cashboxes coins or notes whose current quantity is above desired
levels. Used to reset to the initial change.

To carry out this process, the function EmptyDeviceSpecific must be used,
during the process, CashKeeper will inform us through the ValueToCashBox
event.

NOTe: If any denomination present on the exchange is unreported,

CashKeeper will send all the units of this denomination to cashbox. If any of

the specified quantities of any of the denominations it is higher than the

current level available instead, it will be left to the available level.

6.7.1.2. Total Emptying

[Involved functions: EmptyDevice]

To perform a total change emptying towards cashboxes, it must be used the
EmptyDevice function indicating the device you want to empty.

Once starts the emptying process (partial or total), the device will go into
FLOATING (0x04) or EMPTYING (0x05) state respectively and it will report the
sent amount via ValueToCashBox event.

Once finished emptying (partial or total) will appear the Disabled event
indicating the process completion and leaving the device into IDLE state.

6.7.2. Emptying cashboxes (synchronous process)

[Involved functions: EmptyCashBox]

Even having a cashbox removal detection system, the cashboxes emtying, as
being a completely manual task and can be done with the device off,
CashKeeper should be informed that that task has been made. EmptyCashBox

function must be used.

29 / 68

6.8. Change refill

To fulfil of change effectively the device, it will be necessary the use of
ActivateRefillMode function. Once this function is invoked, on the next Enable
function (a Totalize when CashKeeper is in IDLE state involve an enable to all
purposes) and only on the next, all notes introduced will be stored as change.
In the case that this could not be possible, those will be sent back. Referring to
the notes, there are two exceptions, the first is that the note is deteriorated,
CashKeeper is not able to send it back and the second, it is done when the
notes recycler is full.

6.9. Collecting information from the cash system

To use all the CashKeeper potential, it must be known the amount stored on
the cashboxes and change recyclers.
6.9.1. Cash available for change

[Involved functions: GetCurrentLevel]

To know the levels available for change, GetCurrentLevel is the function it
has to be used.
The levels information of CashKeeper is given in units of the denomination,

not in quantities (25 coins of 2 cents, not 50 cents).

6.9.2. Cash on cashboxes

[Involved functions: GetCashBoxLevel]

To know the levels on the cashboxes, you must use the function
GetCashBoxLevel, but remember, as CashKeeper can operate with
different currencies, it is impossible to give the “money” on the
cashboxes, so it gives the quantity, the denomination and the currency of
the cashbox content.

6.10. The ‘broken’ cent

[Involved functions: GetBrokenCents]

In some currencies, CashKeeper is not able to manage all the
amounts/denominations. Even the system limitation managing some
denominations CashKeeper can pay all the amounts except some VERY
SPECIFIC, in these cases, what it does is to pay one more cent. The application
can manage it invoking the GetBrokenCents function.

For example, in EUROS, CashKeeper cannot manage 1 cent denomination. Even

the system limitation of containing 1 cents coins, it exists Only two amounts

absolutely impossible to be paid: 0,01 € y 0,03 €.

There is also another possibility, it exists the BCMaxCoins and BCMinValue
properties that allow reduce the number of coins used at the expense of “give
away” a cent from time to time.

For example: In a butcher's shop, the amounts tend to be high and at the same

time widely dispersed (not rounded). This is translated into an important

consumption of small coin.

30 / 68

If we establish BCMinValue = 1000 y BCMaxCoins = 4. This means that in any

collection of an amount greater or equal to 10 Euros in which the return of the

change involves more than 4 coins, the system consider if returning one more

cent will reduce the number of coins, if it is really reduced, It will give back an

extra cent and the broken cent will be established.

Let’s suppose a 10,01 € operation, we pay with a 20,00€ note and a 2 cents coin

to get back a 10,00€ note and 1 cent

In a standard situation, the system would return: 1 x 5€, 2 x 2€, 1 x 0.50€, 2 x

0.20€, 1 x 0.05€, 3 x 0.02€ (total amount 10.01€)

With the described configuration the system would return: 1 x 10€, 1 x 0.02€

and point 1 cent of brokenness.

6.11. Working with more than one currency

CashKeeper allows you to mix notes of different currencies collection (EUR,
GBP, USD, etc.). Change is always returned in the main currency. The steps to
follow to use this function are:

� Have a unit ready to work with different currencies.
� “Enable” the currency, we must provide the change from the main

currency by using the SetCCChange function. This value is not
maintained in the configuration, so it is necessary to be informed
whenever we initiated CashKeeper.

� Enable the different denominations of this currency.

6.12. Barcode

CashKeeper is able to read barcodes on the CK900/v references; those must be
“Interleaved 2 of 5” and be centred on the paper (for more details, see annex
10). To enable the reading, just inform to the BarCodeLength property the
characters number of the code.
Once CashKeeper reads a barcode, appears BarCodeRead event informing
about the code and we must answer to the event with RejectPending function
in the case of refusing the ticket or with AcceptPending function in the case of
sending the ticket to the cashbox. In this last case, CashKeeper will send a
BarCodeStored event indicating that it has been stored properly.

31 / 68

6.13. Other functions

6.13.1. Cleaning the coin validator

CleanBulk function performs a coin validator cleaning. Depending on the
Complete parameter, the process can take up to 7 seconds.

6.13.2. Modify the exchange coins counters

With ForceCoinLevel function, it can be modified the change coins counters. It
is been used on situations of coins recycler substitution.

6.13.3. Upgrade Firmware devices

With CheckSmartFirmwareFile function, allows verifying if the upgrade file is
compatible with the device we want to upgrade, as well as indicating the
version.
With GetFirmWareVersion function we can obtain the versions that we have
currently installed on the devices.
UpdateSmartFirmware function performs the real upgrade.

WARNING: Updating the firmware of a component is critical as well as long

runtime functionality. Ensure the stability of the system before proceeding to

update a firmware because in case of failure (power drop, disconnection,

etc.) may cause that the component is completely UNUSABLE and

UNRECOVERABLE.

6.14. System shut down

[Involved functions: CloseAll, Disconnect, Terminate]

We can distinguish two situations:
When the CSSI is located on the same computer that is running the application
usually CSSI is being closed and the involved function is Terminate.
When it refers to different computers, we should leave the CSSI open (CSSI can
not be booted on a remote computer), for this the devise is released with
CloseAll function and then releases the connection with Disconnect function.

32 / 68

6.15. System parametrization

6.15.1. Denominations inhibition

[Involved functions: SetInhibitState, GetInhibitState

CashKeeper allows you to define within the recognized denominations, which
will be accepted, which will be accepted but not used on payments and which
will be rejected. For this, we have GetInhibitState function to obtain actives
inhibitions and SetInhibitState function to establish active inhibition.

6.15.2. Change protection

CashKeeper uses two systems to protect us from possible failures of change.
6.15.2.1. Low level alerts

The system has a LowLevel event that will inform us when any of this
denomination is below recommended levels. It can be distinguished
between coins and notes.
Coins have a common parameter for all of them (it is important to try to
maintain a balanced level of coins) CoinsLowLevel property, it also can
appear (even still above the level) if any denomination is in a big
disadvantage respect to the rest.
Notes are exclusively controlled by SetLowLevelNotes function, it which is
specified the level for each denomination.

6.15.2.2. Note Level Protection

Note Level Protection is a complex protection system for change notes. The
system seeks to control returned change transactions with high value notes.

¿How does it work? This protection system is divided in 4 steps:

1. Note value recognition
If the value of the ticket introduced in operation is below the value
reported on NLPStartValue property, the operation will proceed
normally. Otherwise proceed to the next step.

2. Total transaction validation
If the total value of the transaction has not been informed (through
‘Totalize(…)’ function), the note is returned. If the total has been
informed, proceed to next step.

3. Change enough
It is being determinate the theoretical change that should be
returned in case of complete the operation at this time. If necessary
change is below the limit of NLPPercentValue property the process
continues, otherwise proceed to the next step.

4. Change to deliver out of limits. If the NLPAutoProtect property is in
true, the note will be rejected, otherwise, it will appear
ProtectedValueNote event. Once started this event, the note is
temporary retained on the system until receiving a response
indicating what to do with the note. The answer could be

33 / 68

‘AcceptPending’ to accept the note or ‘RejectPending‘ to be
rejected. If no answer is received in 60 seconds, the note will be
rejected.

6.15.3. ‘Burglary’ protection

CashKeeper has a protection system to prevent massive outflows by way of
payment.

With MaxPayout y PayoutInterval properties it can be set a maximum amount
of payment (MaxPayout) to be paid in a determined time interval (in minutes)
(PayoutInterval).

F.e. Established MaxPayout = 10000 and PayoutInterval = 20, it means that in

20 minutes we can make as many payments as needed while the total sum of

them does not exceed 100 Euros. Once you reach the 100 Euros or the amount

of the next payment make to overcome the 100 Euros, the system will reject the

payment with the error code nº 4.

6.15.4. Other parametres and properties

6.15.4.1. DisableAutoText (Int32) (‘Appearance’ property)

‘DisableAutoText’ property will be useful to be able to control the
display content or, leave that system autonomously controls these
contents.

(NOTE: the available characters from VFD display will be 20 per line

when using the standard letter size and 20 using the double font size)

To have access to specify the display contents it will be used Display

function.

6.15.4.2. LightTime (Int32) (‘Appearance’ property and ‘Lock’ property)

LighTime property, it allows to specify (in milliseconds) the time we
wish that the light on coin cashbox, is switched on while making a
payment (via change, coin reject or direct payment). The default
value is 1000 (1 second).

34 / 68

6.15.4.3. RejectIfClosed (‘Behavior’ property)

RejectIfClosed property will determine if the rejection gate of the
coin validator is left in the open position, on disabled device (IDLE
0x01) or out of service (ALL_CLOSED 0x00).

6.15.4.4. CancelLowLevel (‘Behavior’ property)

This property, will determine if the system, will send events when
notes and/or coins are in low level.

6.15.4.5. CancelValueEvents (‘Behavior’ property)

Like the previous, CancelValueEvents will determine if the system
will send events ValueIN, ValueOUT y ValueToCashBox when
receiving incomes, making payments or sending the amount to the
cashboxes.

6.15.4.6. ConfigID (‘ID’ property)

ConfigID returns the active configuration (the one informed on
Startup command). It could be used to distinguish between devices
when we want to control more than one device simultaneously.

6.15.4.7. LogDisable

Enables or disables logging of incoming notes and coins.

- Not implemented -

6.15.4.8. CoinCashBoxDetect

This property will allow us to enable or disable presence detection of
coins cashbox before performing operations with the device. Defect
value ‘False’=0.

6.15.5. Change the language

It is possible to change the language that CashKeeper® deals with the
user. There are two predefined languages that sets in which languages will
be sent all the errors descriptions and warnings, as well as the text shown
on the CashKeeper® display when is set on automatic mode.

The two predefined languages are Spanish (ESP) and English (ENG). By
default the system is set up in Spanish. To modify it, SetLanguage function
must be used with the wished language code.

By the way, the system has a functionality to modify as you want, the text
shown on the CashKeeper® display when it is set on automatic mode. To
do this, SetDisplayText function should be used. The message code you
wish modify must be indicated and the new text. This modification is not
permanent, so every time that the system is started-up it must be
specified again.

35 / 68

6.16. Error resolution

Some of the CashKeeper errors are critical and they limit or end the system use.
In these cases, it is recommended to use Reset, CloseAll/StartUP functions to
solve the problem and reset the service because those errors, they involve the
disconnection of one of the devices (coin validator, notes validator, etc.) and
consequently the loss of communication with the Host.

To avoid conflicts with Host communications, before disconnecting any device,
communication ports should be closed through CloseAll function and, once
reset the device and the power, use StartUp.

On the other hand, some errors (specifically identified) will require to send the
Reset command once has been solved the problem.

6.17. More than one simultaneous device management

It is possible to manage more that one CashKeeper® devices simultaneously
and connected to the same computer.
The first step would be identify how many and which are they. For this purpose,
exists GetDevices function that gives a devices list (separated by coma)
connected at the same time that is shown on each display.
Once identified the device to be connected, we could connect with StartUp
function specifying the device ID and then we will normally operate.
Each CashKeeper that want to work simultaneously needs its own CKeeper
object as well as its own TCP/IP connectors.

36 / 68

7. CKeeper integration difference between Android and Windows

versions
7.1. Function output parameters

The main difference of using the library 'CKeeper for Android', are the output
parameters.
All the functions that had parameters by reference (Output values), now return
an object of type 'CkResult'. This class only contains the Response attribute.
Read-only property that reports the output parameters of last executed
function.
You can access each parameter thought get method and parameter name (
'.get ("parameter name")').
The name parameter is related to executed function, thus being a value
predefined by the library 'ckeeper.dll' explained above.
The parameter name of the value passed by reference of a function of the
library 'ckeeper.dll', matches the name of the parameter of the '.get' method of
the 'CKeeper for Android' library.

Example:
Function in ckeeper.dll:
Function GetBrokenCents(ByRef Value As Long, ByVal resetValue As Boolean)

As Boolean

In Android:
Public CkResult getBrokenCents(boolean resetValue) { ...}
ckSocket = ckConfiguration.getSocket();
CkResult ckRes = ckSocket.getBrokenCents(false);

Value val = ckRes.get(”Value”);

37 / 68

8. USE CashKeeper®with Direct Method
Below are the procedures for dealing CashKeeper ® with the direct method:

8.1. Prior considerations

The operations in the direct method are almost identical to the CKeeper
method, so if in any doubt, see chapter 6. It is basically distinguished by some
changes in properties only available Keeper method and some methods only
available in the direct method.
In the annexes 3, 5 y 6 you will find the list of functions, properties, and events
with their corresponding code.

8.2. Messages format

8.2.1. Commands

The commands structure sent to the CashKeeper ® service (CSSI) must have the
following format:

Begin with the character ‘$’ ascii 36.
Followed by the message code.
If you have parameters, these will be preceded by a vertical bar ‘|’ ascii 124
End by the character ‘#’ ascii 35.

Example
Send the command Terminate.
$48#

Send a Disable with the parameter payback in 1
$9|1#

8.2.2. Answers

The responses structure to commands sent to the service has the same format

Examples:
The sequence of command and response to enable device (Enable 14
command) would be:

We send:
  $14#

We get:
… with affirmative response
� $14|1#

 … with negative response
�$14| 0|37| Device not available #

(in negative responses, the parameters that follow the response are the error code and error

description)

38 / 68

Sequence of command and response to request for the available quantity
(GetCurrentLevel 19) in change of the 1.00€ and 2.00 € denominations
We send:
$19|100,200#

We get:
�$19|1|30,25#

(It indicates that we have 30 coins of €1 and 25 of €2).

8.2.3. Events

The events structure depends on each one of the events, following the
standard format established for all communications:

The following example of STATECHANGE event indicates that we are in
ENABLED state
�$106|2#

8.3. Start-up (synchronous process)

For the system star-up, the implementation of the service must first be started
(CKeeper.exe) and open a communication channel with the service (CSSI). So
before, it should be decided if the type of communication is to have complete
control over the device (HOST connection type) or, only, for consultation and
configuration functions (OFFICE connection type). The difference lies in the port
you have to deal, because there is a specific port connection for each of the
types. Once established the communication it must be negotiate the key to
access to the service.

8.3.1. Negotiate the access key to the service
(NOTE: This is the only procedure that does not follow the standard of communication

COMMAND � RESPONSE COMMAND)

To negotiate the access key to the service, once established communication
with the service, the command 47 must be sent (StartCNT) to indicate to the
service the beginning of the negotiation:
$47#

At the same time, the system service will response with the command 57 (CNT)
to associate an additional parameter, that will be the basis for the access key:
� $57|number#

Now, with the number that the service provided us, we will have to calculate
the key, adding the value of the ‘Security Seed’ parameter (the same that we
set up in the service implementation). F.e. 140806.
Access Key = 140806 + number (let’s suppose number = 1620168189)
Access Key = 1620308995

39 / 68

We will now send the access key to the service, with command 57 (CNT):
 $57|1620308995#

If the value of the key accords with which the service has been estimated
(knowing the ‘Security Seed’ or ‘Seed security’ value previously), the service will
answer with the command 58 (CNT_OK): and the communication version
number.
� $58|5#

Otherwise the service will be limited to closing the communication.

 Summary of steps to begin communicating with the service (CCSI):
1. Run the service application (CKeeper.exe)
2. Open the sockets communications channel (TCP/IP protocol) on the

port HOST type dedicated connections or on the port OFFICE type
dedicated connections. By default, the port HOST type is 8001, for
OFFICE type connections is 8002.

3. Negotiate the access key. By default the service ‘Security Seed’
parameter is established in 100001.

Once communication is established and negotiated the access key to the
service, we can initiate communication with the CashKeeper ® device. For this
purposes the command 39 (START_UP) must be called:
 $39|0#

If the answer is satisfactory, the CashKeeper state will move from ALL_CLOSED
(0x00) to IDLE (0x01). This state change will be communicated by
STATE_CHANGE event (code 106).

8.4. Shut down the system

[Involved commands: 7 – CloseAll, 48 - Terminate,

To close communications with CashKeeper and close the service should be used

Terminate (48) command. It will close the communication ports with
CashKeeper leaving it in ALL_CLOSED (0x00) state and then it will close CSSI.
To close communications with CashKeeper, and keep the service on for a
posterior connection, it should be used CloseAll (7) command. This will only
close the CashKeeper communication ports leaving it on ALL_CLOSED (0x00)
state.

WARNING: The service is prepared for, in case of a loss of comunication with

the client (socket), it will close communications with the CashKeeper ® device

whatever its state.

NOTE: Even and return an error from the CloseAll (7) command, the service will
seek to close communication with the device and, therefore, the state change
to ALL_CLOSED (0x00) will always be effective.

40 / 68

ANNEX 0. Images

� Figure 1

PROCESS START
STATE: ENABLED 0X02

Note value >=
NLPStartValue?

NO

SÍ

Informed TOTAL ? NO

SÍ

Enough exchange?
NO

SÍ

Exchange <=
 Avai.exchange x

NLPPercent / 100?

Decision
type?

AUTO MANUAL

SÍ NO

NOTE REJECTED

INTRODUCED NOTE

NOTE ACCEPTED
PROCESS END

STATE: ENABLED 0X02

User decision? REJECT ACCEPT

STEP 1

STEP2

STEP 3

STEP 4

WARNING EVENT

41 / 68

� Figure 2

(PROCESS START)
PAYMENT COMPLETED

TIMER ENABLED
Tt = 0

LighTime>0

Tt = LighTime ABORTIMER?

NO

NO Tt = 1

Tt = Tt + 1

NO SÍ

SÍ

SÍ

DISABLED EVENT()

PROCESS END

42 / 68

ANNEX 1. Constants description

LC_DeviceType:

• 0 = LCDT_900

• 1 = LCDT_1000

LC_Smart_Devices:

• 0 = LCS_CoinHopper

• 1 = LCS_NotePayout

LC_CashBox_State:

• 0 = LCCBS_OK

• 1 = LCCBS_Almost_Full

• 2 = LCCBS_Full

LC_Smart_Devices:

• 1 = LCSD_CoinHopper

• 2 = LCSD_NoteFloat

• 3 = LCSD_NotePayout

LC_Logical_Devices:

• 1= LCLD_CoinValidator

• 2 = LCLD_CoinDispenser

• 3 = LCLD_NoteRecycler

LC_CashBox:

• 1= LCCB_Coins

• 2 = LCCB_Notes

• 5 = LCCB_All

LC_ConnTypes:

• 0 = HostMachine

• 1 = BackOffice

 Idiomas:

• 1 = Español

• 2 = English

43 / 68

ANNEX 2. Errors and warnings

ERRORS

Code Message

1 Uninitialized communication

2 Device busy. The command cannot be processed

3 It is not possible to enable the device

4 Security lock (MaxPayout exceeded)

5 Fraud attempted

6 Device out of service

7 Coin jammed in output device

8 Note jammed on secure zone

9 Note jammed on insecure zone

10 Note jammed

11 Device/s unconnected

12 Error on loading configuration data

13 Error in output data

14 Sockets Communications error

15 Error COM port opening

16 Error COM port closing

17 Error on devices reset

18 Unexpected device reset detected

19 Ports configuration error

20 Error initializing devices

21 Exceeded limit on coin cashbox

22 Stacker full

23 Payment refused by the operator

24 The value must be between 100.000 and 9.999.999

25 Enable devices error

26 SSLCash not found. Unable to initiate communication with CashKeeper

27 Exceeded time to find the necessary coins for the payment. Retry the payment

28 Error when verifying the note value for payment. Retry the payment.

29 Recovered communication error

30 Communication with device error

31 Internal device error

32 There is no enough amount for the payment

33 Notes CashBox removed

34 Device_ID value not supported

35 Time limit exceeded for the command execution

36 Device not enabled. The command cannot be processed

37 Device not available. The command cannot be processed

38 Not supported mode

39 Not supported value

40 Not supported values: number of denominations and values distinct

41 The device is already processing this command

42 An unexpected error occurred when executing the command

44 / 68

43 Incorrect device drivers

44 Error reading EEPROM

45 There are no notes and coins entry logs

46 ReadOnly Property

47 Config doesn't exist. You must specify witch device must be setup

48 Specified Device doesn't exist

49 Device already initialized

50 Generic system error

51 CountryCode is not supported

52 Note path open

53 Invalid Path or No enought privileges

54 Coin CashBox removed

55 Coin recycler calibration error

56 Use of reserved characters (# | $) on DISPLAY

57 Country Code not supported

58 Note held in bezel

59 Coin recycler is over his capacity, realize payments or do a full or partial empties.

60 Coin recycler top lid is open

61 Device type can not be detected

62 Coin validator trashdoor can't be closed

63 Firmware file corrupted.

64 Firmware file doesn't much device type.

70 Time of payment exceeded

90 Communication with CashKeeper error (CSSI)

92 Exceeded time limit for CashKeeper response (CSSI)

WARNINGS

Code Message

1 Possible jam on notes cashbox

2 Unknown coin accepted

3 The last fundraising operation is not completed successfully

4 Error detected in coin validator. Possibility of non-counted coins

5 Recoverable fraud attempt

6 Note dispensed at power up

8 Note refused due to system security: Change limit exceeded

9 Note held in bezel

10 Note refused due to system security: Total value not informed

11 Note refused due to system security: Not enought change

12 Coins recycler full

13 Coins cashbox full

14 Coins cashbox is 90% of its capacity

15 Coin recycler top lid is open

16 The trashdoor of the coin validator is trapped and cannot be closed

17 Coin jam in validation area or validation sensor needs cleaning

18 Coin sensor blocked in coin validator

45 / 68

19 Coin validator, disk jammed

20 Extra notes are going to be stacked

22 Notes cashbox full

23 Notes cashbox is 90% of its capacity

24 Emptying Note Recycler to keep unit working

25 Notes cashbox has been removed

26 Coins cashbox has been removed

32 Error saving amounts of cashbox

33 Error return automatic exchange: [reason]

34 Note Recycler full, following notes will go to CashBox

35 Unexpected error in note reading

36 Pay out cancelled by the operator

50 Possible anomaly detected. Verify note cashbox contents

55 Coin recycler calibration error

108 Note jammed in safe area

109 Note jammed in unsafe area

110 Note jammed

111 Note Reader not working

112 Coin validator is not working

46 / 68

ANNEX 3. Function list. Definition

NOTE: All values related to denomination values or amounts should be sent and

returned in cents.

• (0) AbortTimer

It sends an order to cancel the 'expected' time established for the collection of
change (LighTime property).

• (3) AcceptPending
After trigging one of the ProtectedValueNote, MaxCoinsWarning, BarCodeRead
event, should respond to the event with AcceptPending to accept or
RejectPending to reject.

• (67) ActivateRefillMode() as boolean

This method enables 'exchange filling' mode only during the next 'Enable()'
(either direct or indirect using'Totalize'). This method will cause ALL incoming
notes are sent to the Exchange store or returned.

• (4) AlternateOperation (Operation as Byte) as boolean

Toggles the current operation with other, leaving aside the values of the
current operation. The number of the active operation when the system starts
is ‘0’.

• (6) CleanBulk (Complete as boolean) as boolean

It starts a cleansing cycle for the coins entrance device.

Complete:

o false (short cleansing cycle)
o true (long cleansing cycle)

• (7) CloseAll () as boolean

It closes the channels of communication with the device. Although closure
procedure could result in an error, shall be considered, in all levels, that the
channels have been closed.

47 / 68

• (5) CheckLevels (LowLevelActive As boolean, HopperFull As boolean,

CoinCashBoxState As LC_CashBox_State, NoteCashBoxState As

LC_CashBox_State) as boolean

It performs a general check of exchange notes and coins levels and of the
cashboxes levels, returning values on each of the parameters:

Parámetro Valor Significado

LowLevelActive False There are no denominations in alarm for low
level

LowLevelActive True There are denominations in alarm state by
low level. Check levels through
GetCurrentLevel function

HopperFull False Coins recycler level OK

HopperFull True Coins recycler full. Must be emptied at least
partially.

CoinCashBoxState LCCBS_OK Coins cashbox level OK

CoinCashBoxState LCCBS_AlmostFull Coins cashbox level up to 90%

CoinCashBoxState LCCBS_Full Coins cashbox level exceeded. Must be
emptied.

NoteCashBoxState LCCBS_OK Notes cashbox level OK

NoteCashBoxState LCCBS_AlmostFull Notes cashbox level up to 90%

NoteCashBoxState LCCBS_Full Notes cashbox level exceeded. Must be
emptied.

• (55) CheckSmartFirmwareFile (FullPathFile as string, Device_ID as

LC_Smart_Devices, FirmwareVersion as string, DataSet as string) as Boolean

It checks the firmware version and dataset contents on the specified file in
‘FullPathFile’, as the compatibility with ‘Device_ID’ specified. Should be noted
that path is related to the CSSI location.

• (9) Disable(PayBack As Boolean) As Boolean

It disables the device leaving him in a rest state (not suitable for cash entry)
returning, in the case, the amount.

Parámetro Valor Significado

PayBack False It does not return the entered amount.

PayBack True It returns the entered amount.

48 / 68

• (52) DiscardOperation(Operation as byte) as Boolean

It discards the indicated operation, leaving the pending operation values to 0
(zero). WARNING! This function does not cause the refund of the introduced
amount.

• (68) DiscardPayOperation() as Boolean

It discards the interrupted payment operation. WARNING! This function does
not cause any refund.

• Disconnect()

It disconnects the CashKeeper connection. If the state is different to
ALL_CLOSED, CSSI will execute automatically CloseAll.

• (10) Display(Line1 as String, Line2 as String, UseBigFont) as Boolean

It sends a message to the VFD display. Each of the lines cannot contain more
than 20 characters. In case of UseBigFont (double height text) is set to true, the
text contained in Line2 will not be considered.
NOTE: The characters ‘#’, ‘|’ and ‘$’ are reserved and its use is restricted

• (11) EmptyCashBox(Device_ID as LC_CashBox) as Boolean

Reset (=0) the value counter stored on the device cashbox identified as
Device_ID. It should be used whenever cashboxes are emptied.

• (11) EmptyCashBoxEx(CashBox As LC_CashBoxes) As Boolean

Extends function (11) EmptyCashBox, Allow user to empty Notes Cash Box one
by one. (Only works on CK1000)

• (12) EmptyDevice(Device_ID as LC_ CashBox) as Boolean

Empty completely the change to the device cashbox identified as Device_ID.

• (13) EmptyDeviceSpecific(Denoms as String, NumberToKeep as String) as

boolean

It sends to cashbox the amount corresponding to each of the denominations
specified in the ‘Denoms’ list (separated by commas) to leave as change the
corresponding values specified on the ‘NumberToKeep’ list (separated by
commas respectively).

• (14) Enable() as Boolean

It enables the device to let it in cash receiving state.

49 / 68

• (15) ForceCoinLevel(Value as Integer, Level as Integer, AddToCurrentLevel As

Boolean) as Boolean

The coins storage and delivery device, in exceptional cases it can be massively
charged by top via (without using the coin input device). Only in these cases, it
will be necessary to use this method, to inform the amount of each
denominations introduced on the device.

WARNING: An irresponsible use of this function can lead to problems in the

coins count and payments.

• (66) GetAllProperties

Returns all the properties in the following order:
BCMAXCOINS
P_BCMINVALUE
CANCELLOWLEVEL
CANCELVALUEEVENTS
CONFIGID
COINCASHBOXDETECT
DISABLEAUTOTEXT
LIGHTTIME
LOGDISABLE
MAXCOINS
MAXPAYOUT
MINFASTIN
NLPAUTOPROTECT
NLPPERCENTVALUE
NLPSTARTVALUE
NOTELEVELPROTECTION
PAYOUTINTERVAL
REJECTIFCLOSED
COINSLOWLEVEL
DEVICETYPE
BARCODELENGTH
CRITICALBEHAVIOR

• (16) GetBrokenCents(Value as INT32, ResetValue as Boolean) as boolean

It stores in Value the amount of cents more that have been returned in change
due to rounds to the rise in values of 1 and 3 cents. ResetValue parameter,
indicates if is wanted to reset the counter.

50 / 68

• (17) GetCashBoxLevel(CountryCode As String, Values As String, Levels As

String) As Boolean

It returns on Levels variable, the denominations levels on cashboxes specified
on Values.
CountryCode: Currency which will be values referenced (EUR, GBP, USD, etc.).
Values: Denomination value, several can be specified separated by comma.
Levels: Amount of the requested denomination, in case of several, it returns a
list of amounts separated by comma in the same order as the requested.

• (77) GetCCChange(CountryCode As String, Change As Int32) As Boolean
On the Change variable, it returns the amount of the currency exchange
CountryCode into the main currency.

• (86) GetCCDetails(CC As String, Multiplier As int32, Decimals As int32) As

Boolean

Return multiplier and the number of decimals to be displayed. This function
allows us to make our application aware of working currency.
Ex:
Euro, multiplayer is 100, as amounts are cents of Euro, the number of decimals
is 2.
Chilean peso, el multiplier is 1, as they don’t use decimals, the number of
decimals to display is 0.

• (78) GetCCDenominations(CountryCode As String, Coins As String, Notes As

String) As Boolean

Returns the values list of the different currency denominations, deposited in
Coins the list of the coins values separated by comma and in Notes the list of
the notes values separated by comma.

• (24) GetCounters(CoinCounter as Int32, NoteCounter as Int32) as Boolean

On CoinCounter and NoteCounter values, it returns the value of absolute
counters (total input number of units) of coins and notes from device
manufacture.

• (38) GetCountryCodes(MainCC As String, OtherCC As String) As Boolean

On MainCC variable, it returns the main currency code (EUR, GBP, MXN, USD,
etc.) and on OtherCC variable, the list of other supported currencies separated
by comma.

• (19) GetCurrentLevel(Values as String, Levels as String) as Boolean

On Levels variable, it returns the Exchange quantity contained on the
denominations specified on Values variable separated by comma.
Attention. When a device is in error, device contents could be not shown.

• (72) GetDevices(DeviceList As String) As Boolean

Returns the list of CashKeeper IDs connected to the computer where it resides
the CSSI.

51 / 68

• (54) GetFirmwareVersion(Device as LC_Logical_Devices, FirmwareVersion as

string, Dataset as string) as Boolean

On Firmware Version and Dataset variables, it returns the firmware version and
the actual dataset from the device specified on Device.

• (21) GetInhibitState(CountryCode As String, Values As String, Inhibits As

String) As Boolean

On Inhibit variable, it returns a list of states of acceptance or inhibition of the
specified denominations list in Values of the currency CountryCode.

Inhibit = 0 : the denomination is accepted.
Inhibit = 1 : the denomination is accepted but not paid.
Inhibit = 2 : the denomination is rejected.

• (76) GetLastIN(CountryCodes As String, AmountsOrDenom As String, Detail As

Boolean, Operation As Byte) As Boolean
Gets the form of payment used in the last payment made returning the list in
AmountsOrDenom, Detail parameter is used to select the mode being true
detailed and false accumulated.
Accumulated: Returns the total amount in each currency used in payment.
Detailed: Returns the list of denominations used in the payment. If more than
50 denominations, returns the accumulative value and modify the Detail
parameter.

• (79) GetLastLevels(ConfigID As Byte, Denoms As String, Qtys As String, CCs As

String) As Boolean

Obtains last known levels. Useful to get last known levels in case of error during
start-up.

• (8) GetLowLevelNotes(Values As String, Levels As String) As Boolean

On levels parameter, it returns the minimum level list (separated by comma) of
the denominations list provided on Values parameter.

• (82) GetNetworkParams(HostName As String, DHCPEnabled As Boolean, IP As

String, Gateway As String, Mask As String, DNS1 As String, DNS2 As String,

MasterPort As int32, OfficePort As int32, Seed As int32) As Boolean

Returns network parameter values.

• (23) GetMaxLevel(Values as String, Levels as String) as Boolean

On levels parameter, it returns the maximum level list (separated by comma) of
the denominations list provided on Values parameter.

• (74) GetUnikeID (ID as string) as Boolean

On ID parameter, it returns a unique identifier for CashKeeper® device.

NOTE: This identifier may change depending on the hardware updates

52 / 68

• (29) Pay(Value as Int32, TestOnly as Boolean) as Boolean

Starts a cash exit process specified by the Value parameter. The denominations
distribution in coins and notes is done automatically.

If TestOnly variable is set into TRUE, only will be a test done if it is possible to
pay this amount.

• (30) PaySpecific(Denoms as String, NumberOf as String, TestOnly as Boolean)

as Boolean

Starts a cash exit process with the denominations specified on ‘Denoms’
(separated by commas) in the quantities of each specified in ‘NumberOf’
(separated by commas).

If TestOnly variable is set into TRUE, only will be a test done if it is possible to
pay this amount.

• (87) PaySpecificEx(Denoms as String, NumberOf as String, TestOnly as

Boolean) as Boolean

Starts a cash exit process with the denominations specified on ‘Denoms’
(separated by commas) in the quantities of each specified in ‘NumberOf’
(separated by commas).

If TestOnly variable is set into TRUE, only will be a test done if it is possible to
pay this amount.

This function difers from the previous one on the way this function uses
MaxPayout and PayoutInterval properties.

• (32) RejectPending()

After starting any of ProtectedValueNote, MaxCoinsWarning, BarCodeRead
events, should respond to the event with AcceptPending to accept or with
RejectPending to reject.

• (33) Reset() as Boolean

Reset the device and restart.

• (26) ResetCounters(Device_ID as LC_CashBox) as Boolean

Reset the coins or notes absolute counter.

• (75) SetCCChange(CountryCode As String, Change As Int32) As Boolean

Set the specified currency exchange in CountryCode related to the main
currency. The operation to get the payment is ((Change * Note value) / 1000)
without decimals.

53 / 68

• (81) SetDateTime(Year As Integer, Month As Integer, Day As Integer, Hour As

Integer, Minute As Integer, Second As Integer) As Boolean

Set Date and Time on devices equipped with Smart CK Board (models CK900e
and CK1000). On USB model, this function returns always true.

• (71) SetDisplayText(Code as byte, NewText as string) as Boolean

Modifies the automatic display text identified with Code variable for the text
sent in NewText.

I.E.

Originally the17 text code for the display contents the text ‘TO BE PAID:’, If we

would like to modify this text to, i.e., ‘TOTAL :’, we should invoque the

function…

SetDisplayText (17, ‘TOTAL :’)

• (36) SetInhibitState(CountryCode As String, Values As String, Inhibits As

String) As Boolean

Set the inhibition state (acceptance permission) of the specified denominations
on CountryCode / Values.

Inhibit = 0 : accepted denomination
Inhibit = 1 : accepted denomination, but not used on payments.
Inhibit = 2 : rejected denomination

• (70) SetLanguage(Idioma As Idiomas) As Boolean

Set the defect language used by CashKeeper® to communicate via text
messages and display. The available languages are Spanish (ESP) and English
(ENG).

• (69) SetLogPath(NewPath as String) as Boolean

Set the path of the LOG file storage to the indicated route on permanent basis.
This path must be relative to the device where it is running the CSSI.

• (27) SetLowLevelNotes(Values As String, Levels As String) As Boolean
Assigns the minimum level by each denomination of note from which the
system began to warn of low level.
Values parameter will be informed with one or more values separated by
comma of the denominations we want to be informed and Levels parameter
will contain as many values separated by comma as values has Values
parameter.

54 / 68

• (35) SetMaxLevel(Values As String, Levels As String) As Boolean
Assigns the maximum level by each coins/note denomination from which the
system will start sending to the cashbox by excess of change. On CK1000, the
maximum notes level is forced to 26.
Values parameter will be informed with one or more values separated by
comma of the denominations we want to be informed and Levels parameter
will contain as many values separated by comma as values has Values
parameter.

• (83) SetNetworkParams(HostName As String, DHCPEnabled As Boolean, IP As

String, Gateway As String, Mask As String, DNS1 As String, DNS2 As String,

MasterPort As int32, OfficePort As int32, Seed As int32) As Boolean

Set network parameters.

• (39) StartUp(Configuration As Byte, Device as Int32) As Boolean

It is the first method that should be called once initiated connection. Opens
communication ports, loads configuration data and initializes the device.
Configuration: The configuration identifier that we want to start, in case there
is no one, it is been done.
Device: Optional parameter, it indicates device we want to start with that
configuration. It is only mandatory if the computer that is running the CSSI has
more than one CashKeeper physically connected.
As a result in the direct method, it returns the same as GetAllProperties

parameter, because the most common to start, is to find out the configuration
that is loaded.

• (51) TargetValue(Value As Long, Operation As Byte) As Boolean

Gets the Target of the operation in ordered.

• (48) Terminate
This method is equivalent to run CloseAll and Disconnect, with the particularity
that if the CSSI this on the same machine as the application, it closes the CSSI
too.

• (42) Totalize(Total_Value as Int32, AutoClose as Boolean) as Boolean

Sets the total operation to inform the customer the value that should be
effective in the current operation.

If AutoClose parameter is set to TRUE, once is detected that there is enough
amount, it returns the change automatically. If IDLE (0x01) state is being
invoqued, the device is automatically enabled.

• (56) UpdateSmartFirmware(FullPathFile as string, Device_ID as

LC_Smart_Devices) as Boolean

Check and update the firmware of the specified device with the indicated
update file.

55 / 68

• (43) ValueIN(Value as Int32, Operation as Byte) as Boolean

Returns the total value entered in the operation specified in the Value

parameter. 255 operation is equivalent to the current active operation.

• (44) ValueOUT(Value as Int32) as Boolean

Returns the total value paid in the Value parameter.

• (45) ValueToCashBox(Value as Int32]) as Boolean

Returns the total value sent to cashbox in the Value parameter.

56 / 68

ANNEX 4. List of function by SYNCHRONOUS or ASYNCRHONOUS.

List of function by SYNCHRONOUS Synchronous functions are those which the
returned result implies the completion of the function task, so there won’t be any wait
of any event release to complete this process.

Function Command States in which it is possible to run it

AbortTimer 0 0x01, 0x02, 0x07

AcceptPending 3 When you receive ProtectedValueNote,

MaxCoinsWarning, BarCodeRead event.

ActivateRefillMode 67 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

AlternateOperation 4 0x01, 0x02

CheckLevels 5 0x01

CheckSmartFirmwareFile 55 0x01

CleanBulk 6 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

CloseAll 7 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

CNT* 57 0x00

CNTOK* 58 0x00

DISCARD_PAY_OPERATION
*

68 0x01

DiscardOperation 52 0x01

Display 10 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

EmptyCashBox 11 0x01

Enable 14 0x01, 0x02

ForceCoinLevel 15 0x01

GET_PROPERTY* 63 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GET_PROTOCOL_VERSION* 62 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GETALLPROPERTY 66 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetBrokenCents 16 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetCashBoxLevel 17 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetCCChange 77 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetCCDenoms 78 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetCounters 24 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetCountryCodes 38 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetCurrentLevel 19 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetDevices 72 0x00

GetFirmwareVersion 54 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetInhibitState 21 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetLastIN 76 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetLowLevelNotes 8 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetMaxLevel 23 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

GetUnikeId 74 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

RejectPending 32 When you receive ProtectedValueNote,

MaxCoinsWarning, BarCodeRead event.

Reset 33 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

57 / 68

ResetCounters 26 0x01

SET_PROPERTY* 60 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

SetCCChange 75 0x01

SetDisplayText 71 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

SetInhibitState 36 0x01

SetLanguage 70 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07

SetLogPath 69 -todos- (0x00 a 0x07)

SetLowLevelNotes 27 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

SetMaxLevel 35 0x01

SetRefillMode 67 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

START_CNT* 47 0x00

StartUp 39 0x00

State 40 -todos- (0x00 a 0x07)

TargetValue 51 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

UpdateSmartFirmware 56 0x01

ValueIN 43 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

ValueOUT 44 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

ValueToCashBox 45 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
* Only available in direct method

58 / 68

List of function by ASYNCHRONOUS

Asynchronous functions are those which the returned result do NOT imply the end of
the task's function. The returned result only implies the availability of the system to
start the task, as well as checking that the parameters specified in the function are
syntactically correct.

For the completion of these functions, it must always expect the Disabled(…) event.

Function Command States in which it is

possible to run it

Meaning of correct

answer

Disable 9 0x02 Proceed to disable the
system (system IDLE
0x01)

EmptyDevice 12 0x01 It is possible to make
the emptying

EmptyDeviceSpecific 13 0x01 It is possible to make
the emptying

Pay 29 0x01 It is possible to make
the payment

PaySpecific 30 0x01 It is possible to make
the payment

Totalize 42 0x01, 0x02, 0x07 It is possible to
indicate the total
operation amount

59 / 68

ANNEX 5. List of properties

• (20) BarCodeLength

Specifies the size of the barcode can be read by CK900. It must be pair and
between 6 and 24 digits, if you do not want to activate it, it can be assigned
zero-length.

• (0) BCMaxCoins

It specifies the minimum number of coins to allow the extended BrokenCent.

• (1) BCMinValue

It specifies the minimum amount to allow the extended BrokenCent.

• (2) CancelLowLevel

It allows disabling events from below minimum levels (Not recommended).

• (3) CancelValueEvents

It allows disabling value events (ValueIN, ValueOUT, CashBoxValue).

• (5) CoinCashBoxDetect

It specifies if is controlled the coins cashbox settled.

• (18) CoinsLowLevel

It specifies the minimum coins Lumber under which it will begin to notify low
levels warning (LowLevel event).

• (4) ConfigID

Only reading property that returns the active configuration identification (used
on StarUp function).

• (*) ConnectionType

Only reading property that returns the active connection (used on Connect
function).

• (21) CriticalBehavior

This property, control the behaviour of the coin recycler when a critical level of
any coin is detected. We consider a coin is in critical level, when his level is
really disadvantage from the rest of coins level. Example: All coins has a level
200 and one of them has level 30.
0 = we send to Cash Box the coins with a level higher than 40 until critical level
disappears. This process is done while the unit is working, so it is going to take
some time, there is enough time to refill the coin that is in critical level.
1 = free pay mode will be used. That means payments will use coins in the
order they appear, this cause to use more coins than usual and contributes to
lower the level of the higher levels.
2 = Ignore. This state is ignored, this allow user for extreme configurations, bad
use can make payments more time consuming and cause more errors.

60 / 68

• (*) CurrentOperation

Only reading property that returns the active operation (by default it is zero,
but it can be change with AlternateOperation function).

• (19) DeviceType

Only reading property that returns the type of device connected.

Possible values:

� 0 - CK900
� 1 - LCDT_1000

• (6) DisableAutoText

It indicates whether the CashKeeper display works autonomously or not.

• (*) ErrorCode

Only reading property that informs of the error code occurred in the last
executed function.

• (*) ErrorDescription

Only reading property that informs of the error description occurred in the last
executed function.

• (*) HostIP

Only reading property that returns the IP reported in Connect command.

• (*) HostPort

Only reading property that returns the Host port in Connect command.

• (7) LightTime

Indicates the time that the coins output led will be open when coins exit occurs
whatever the cause is. In addition, it allows controlling the delay when the
Disabled event ends compared to the real ending.
In milliseconds.

• (8) LogDisable

It indicates whether it is deactivated or not log for subsequent diagnostics.
(Partially implemented, HIGHLY recommended to always have it false).

• (9) MaxCoins

It indicates from how many coins on a payment, the system will tell us that we
are going to spend more coins.

61 / 68

• (10) MaxPayout

Indicates the maximum authorized amount in payments for a time interval
defined on PayoutInterval property. Regardless of whether one, two, or
thousand payments have been done during that interval of time.
WARNING!!!. Exchange payments are not counted as payments and that
includes the negative amounts Totalize.

• (11) MinFastIn

Applies only in CK900. It indicates, on a single operation, the number of notes
from which must be sent directly to cashbox instead of to note recycler, in
order to accelerate the notes insertion.

• (12) NLPAutoProtect

It indicates whether the notes change protection decides autonomously or ask
the user.

• (13) NLPPercentValue

It indicates the percentage change in notes to protect.

• (14) NLPStartValue

It indicates from note value will act the protection of change.

• (15) NoteLevelProtection

It indicates if notes protection is active.

• (*) OfficePort

It indicates the port connection for type OFFICE connections.

• (16) PayoutInterval

It indicates the period in payment protection.

• (17) RejectIfClosed

It indicates if in stand by state, the coins introduction door will be in a position
of coins rejection.

• (*) SecuritySeed

Safety number for connection must have 6 digits.

• (*) State

It indicates CashKeeper state.

* Only available in Keeper method

62 / 68

ANNEX 6. List of events

• (114) BarcodeRead(Code as String)
It starts each time the notes validator reads a barcode. This event must be
answered. AcceptPending function sends the barcode note to cashbox
(discount vouchers, gift voucher, etc.). RejectPending function gives back the
barcode note (suitable for cards, etc.).

• (115) BarcodeStored(Code as String)
It starts when a barcote note is stored into cashbox correctly.

• (100) Disabled (ErrorCode As Int32, ErrorDescription As String, CurrentValue As
Int32, TargetValue As Int32, State As Byte, Operation As Byte)
It starts at the end of any asynchronous operation. In Error case, ErrorCode
parameter will be non-zero, ErrorDesciption will contain the error description,
CurrentValue will indicate the incoming/paid amount, TargetValue indicates the
objective value, State the kind of operation and Operation of the current
operation.

• (102) LowLevel (ValuesInfo as String, LevelsInfo as String)
It starts at the end of a cash exit operation (via change or cashbox) if any
denomination is below CoinsLowLevel in the case of coins, and in the case of
notes, of LowLevel value configurated in SetLowLevelNotes function.

ValuesInfo(string): String containing denominations corresponding to the
event.
LevelsInfo(Int32): String that contains the current levels of each
denominations informed in ‘ValuesInfo’.

• (103) MaxCoinsWarning (ValuesInfo as String, NumberInfo as String)
It starts each time that the quantity of coins to be used in a payment (directly
or by refund of change) is bigger than the maximum established in MaxCoins

property.

• (113) NoteHeldInBezel (NotePresent as Boolean)
It starts each time that a note appears on the mouth validator (either by notes
payment or entry rejection)

NotePresent (boolean): It is reported the status of the note
 True: present note
 False: retired note

• (104) ProcessInterrupted (State as Byte, Value as Int32, Target as Int32,
Operation as Byte)
It starts at CashKeeper initialization if it has been closed in the middle of a
process. Imagine that the light is going out in the middle of a transaction. At the

63 / 68

beginning it will indicate if at that time it was doing an operation, which was
the introduced amount, the amount wanted to charge and operation. In the
case of payment, the amount wanted to pay, and the paid amount.

State (byte): It is reported the status of the device at the time of the
interruption.
Value (Int32): It is reported the value (input or output) which was reached
before the interrupt.
Target (Int32): It is reported the objective value (input or output) which
should be reached at the time of the interruption.
Operation(Byte): Reports the operation number that could not be
completed.

• (105) ProtectedValueNote (Value as Int32, PayoutNeeds as Int32, TotalChange
as Int32, Operation As Byte)
It starts if … (see 6.15.2.2)

When ProtectedValueNote starts, all cash input systems are paralyzed waiting
to the response of the user using AcceptPending o RejectPending methods.

• (106) StateChange (State as Byte, OldState as Byte)
It starts whenever the system state changes. Indicating the new and the
previous state.

• (107) ValueIN (CurrentValue as Int32, Target as Int32, Operation As Byte)
It starts whenever a note or coin is inserted into the system and
CancelValueEvents property contains false.

• (108) ValueOUT (CurrentValue as Int32, Target as Int32, Operation As Byte)
It starts in the cash output actions (via Exchange or return) and
CancelValueEvents property contains false.

• (109) ValueToCashBox (CurrentValue as Int32, Target as Int32, Operation As
Byte)
It starts in the cash output actions to cashbox and CancelValueEvents property
contains false.

• (110) Warning (Code as Int32, Description as String)
It starts when it appears non-critical situations but that require knowledge of
the user. After the event is released, the device will try to return to the state
previous to the ‘Warning’ event.

64 / 68

ANNEX 7. Manual parameters configuration of connection to the service (CSSI)

When the application runs on the same computer that is physically connected to
CashKeeper, the configuration of the connection parameters to the CSSI is performed
automatically at the moment of calling ‘Connect(…)’ method. If the CSSI (as well as the
physical connection to CashKeeper) is located in a dedicated machine, the
configuration of the connection parameters must be done manually following those
steps:

Create a direct access to the CSSI (CKeeper.exe) located by default in the system
directory (“c:\windows\system32” or “C:\windows\syswow64”) passing as parameter
the Host port, Office port, Seed. Having approximately the following form:
“C:\windows\system32\CKeeper.exe 8001,8002,100001”

ANNEX 8. Configuration of the USB port (S.O. WINDOWS®) power management

To ensure that communication with CashKeeper is always available, on PC / TPV /
Server connected to the device, it must disabled the option of power automatic
disconnection from the USB port that WINDOWS ® operating systems have configured
by default.

In order to proceed, it must acceded to the ‘Device Administrator’ (MyPC, right button,
Administrate)

65 / 68

‘Equipment Administrator’ will be opened and, there, we will select ‘Device
Administrator’.

Already with the 'Device Administrator' active, it must be selected the hub USB root of
our system, right button, ‘Properties’.

Finally, in the properties window, select the tab ‘Power Administration’ and UNCHECK
the option ‘Allow the computer to turn off this device to save power’.

66 / 68

67 / 68

ANNEX 9. Codes and text on the display relation in automatic mode

Código Texto ESP Text ENG

1 CASHKEEPER (protegido) CASHKEEPER (protected)
2 Iniciando Sistema System startup

3 Configurando Sistema Configurating

4 INTRODUCIR IMPORTE INSERT COINS/NOTES

5 ERROR EN EL SISTEMA SYSTEM ERROR

6 -------------------- --------------------

7 Actualizando sistema Updating system

8 FUERA DE SERVICIO OUT OF SERVICE

9 Limpiando validador Cleaning validator

10 ...Espere... ...Wait...

11 - NO DISPONIBLE - - NOT AVAILABLE -

12 Comprobando estado Checking state

13 Cerrando sistema.... Closing system......

14 Cerrando puertos.... Closing ports.......

15OCURRIó UN ERROR ERROR

16 (20 espacios) (20 blanks)

17 A PAGAR: TOTAL:

18 PAGADO : PAID :

19 IMPORTE INTRODUCIDO: TOTAL PAID:

20 Terminal ocupado Device blocked

21 por el operador by the operator

22 ¡ATENCIÓN! ¡WARNING!

23 -BILLETE ATASCADO- -NOTE JAMMED-

25 -TERMINAL BLOQUEADO- -DEVICE BLOCKED-

26 A DEVOLVER: TO DISPENSE:

27 DEVUELTO : DISPENSED :

28 - RECOGER IMPORTE - - YOUR CHANGE -

29 Euro Euro

30 Terminal detenido Device Temporary

31 Temporalmente Stopped

32 Terminal activo Active Terminal

68 / 68

ANNEX 10. Barcode tickets format

Coding Interleave 2 of 5 (ITF)

Bars width Minimum: 0.5mm
Maximum: 0.6mm

Contrast ratio 2:1

Number of characters Minimum: 6
Maximum: 24

Dimensions

Orientation Vertical

A Minimum: 65mm
Maximum: 82mm

B Minimum: 120mm
Maximum: 156mm

C Minimum: 10mm

D Minimum: 35mm

E Minimum: 10mm

A

B

C

D

D

E

E

